Upper Bounds of Heat Kernels on Doubling Spaces
نویسندگان
چکیده
In this paper we give various equivalent characterizations of upper estimates of heat kernels of regular, conservative and local Dirichlet forms on doubling spaces, from both the analytic and probabilistic points of view. The first part of this paper uses purely analytic arguemtn, while the second part focuses on the probabilistic aspects where the exit time plays an important role.
منابع مشابه
Stability of heat kernel estimates for symmetric jump processes on metric measure spaces
In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...
متن کاملComparison inequalities for heat semigroups and heat kernels on metric measure spaces
We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bou...
متن کاملHeat kernels on manifolds, graphs and fractals
We consider heat kernels on different spaces such as Riemannian manifolds, graphs, and abstract metric measure spaces including fractals. The talk is an overview of the relationships between the heat kernel upper and lower bounds and the geometric properties of the underlying space. As an application some estimate of higher eigenvalues of the Dirichlet problem is considered.
متن کاملEquivalence Conditions for On-diagonal Upper Bounds of Heat Kernels on Self-similar Spaces
We obtain the equivalence conditions for an on-diagonal upper bound of heat kernels on self-similar measure energy spaces. In particular, this upper bound of the heat kernel is equivalent to the discreteness of the spectrum of the generator of the Dirichlet form, and to the global Poincaré inequality. The key ingredient of the proof is to obtain the Nash inequality from the global Poincaré ineq...
متن کاملHeat Kernel Generated Frames in the Setting of Dirichlet Spaces
Wavelet bases and frames consisting of band limited functions of nearly exponential localization on R are a powerful tool in harmonic analysis by making various spaces of functions and distributions more accessible for study and utilization, and providing sparse representation of natural function spaces (e.g. Besov spaces) on R . Such frames are also available on the sphere and in more general ...
متن کامل